Origami structures and bio-inspired design used to create crawling robot

0
217
Origami Robot

Scientists have taken inspiration from origami structures and bio-inspired design to create a crawling robot.

The work by scientists at University of Illinois Mechanical Science has been published as an an invited paper in Smart Materials and Structures. Scientists used origami paper folding principles to construct and actuate mechanisms and machines for possible integration with small, scalable, and cheap robots as well as deployable adaptive structures.

According to the team behind the crawling robot, they were inspired by a common theme in the rapid movement of soft plants like the Venus Flytrap and the swimming of uni-flagellated bacteria. Both of these use the flexibility of their bodies to quickly snap, allowing fast motion and saving energy.

The robot uses origami building blocks to mimic the gait and metameric properties of earthworms and directional material design to mimic the function of the setae on earthworms that prevents backward slipping, one of the authors of the paper explains.

The researchers investigated the concept of using the Kresling crease pattern of origami, which is a chiral tower with a polygonal base. This origami tower couples its expansion and contraction to longitudinal and rotational motion, similar to a screw, and they used buckling instabilities to accomplish a large-stroke snapping motion from small inputs. Their design utilizes a skeleton made from the buckling origami tower as mechanisms to transform motor rotation to fast expansion and contraction of the worm robot, enabling a crawling gait. It can go forward and turn left and right using repeated expansion and contraction.

“The ability to produce a functional and geometrically complex 3D mechanical system from a flat sheet introduces exciting opportunities in the field of robotics for remote, autonomously deployable systems or low cost integrated locomotion,” they wrote.

Their mathematical analysis is thought to be the first of its kind to use the idea of virtual folds to analyze panel bending in snapping Kresling-like origami towers. This configuration presents an advantage in energy consumption and makes the open loop locomotion control straight-forward.

Moving forward, this design can also be used in manipulations, booms, and active structures.

LEAVE A REPLY

Please enter your comment!
Please enter your name here